ふりかえり方法のふりかえり2021

これは GMOペパボ ディレクター Advent Calendar 2021 の13日の記事です。 今年2021年は、個人のふりかえりを週次で行ってみた。
もともと日記を(日次で)書いてはいたけど、出来事を数行おざなりに書く程度だった。1日の終わりに書く日記にそれ以上の気力が出ず、日記の改善はあきらめて週次でふりかえるように変更した。
2021年のふりかえりとして、この週次のふりかえりについてふりかえってみる。

どういう形式でふりかえったか

以下の項目を立ててふりかえるようにしていた。
今週のトピック
急に「今週をふりかえるぞ」と思っても、そもそもどのような週だったかが意外と記憶から抜け落ちている。まずは何が起きた/した週だったのか書き出す。
KPT
上記の書き出しでだいたいどんな週だったか掴めたら、Keep / Problem / Try という観点からその週をふりかえる。
課題
上記2項目は短文での簡単なふりかえりなので、もっと突っ込んでふりかえりたい出来事については別で書く。
こんな感じで書いていた(思ったことをそのまま書いていくので、後から読み返すと理論がつながっていない)

うまくいったところ

日々の感情の動きを少し俯瞰できた

ふりかえろうとすると、心の中で思っているだけなら不要だった言語化が必然的に必要になる。
漠とした気持ちをどうにか文章に落とそうとする過程で整理されていき、感情がラベリングされる。これがその時点での俯瞰につながり、毎週の記録が積み重なっていくことで過去との差分が見えてきて、それが長期的な視点での俯瞰につながったように思う。
これは「いったい何週間同じことで悩んでいるのか、悩み方に進歩がない」ということを(薄々気づいてはいるのだが)明確に突きつけてくるので、その点でも良かったと思う。

継続して取り組むことができた

こういった取り組みは徐々にやらなくなってしまうことが多い(自分は)。今回、途中飛んだ週は若干あったものの、継続できたのは以下の点がうまく働いたように思う。
・取り組む時間と場所を決めた
毎週土曜日の午前中にやるようにしていた。休日の方が外的要因による気持ちの波が小さく、午前中だと睡眠により脳が整理されていて取り組みやすかった。また(コロナが落ち着いている時期は)カフェで行うようにしていたので、場所も固定され「この時間にここに行ったらやる」という習慣になりやすかったと思う。
・予定を設定した
やることをNotionで管理しているので、毎週このふりかえりのtodoを入れるようにした。必ずNotionは見るので、todoが未完了で残る気持ち悪さが着手を後押しした。

うまくいかなかったところ

本当にしんどい時は書けなかった

本来、何かつらいこと(≒ 学びにつながる可能性が高いこと)があった時こそふりかえるべきなのだろうけど、それができない週もあった。でもその週の記録が残っていないと「あの時期苦しかったな」という漠然とした認識になってしまうし、自分に都合の良いように記憶を改竄してしまう恐れもある。
同じつらかったこと/失敗したことでも、ふりかえりを書ける時と書けない時が存在した。 書けるのは、その出来事の直後に「しまった、ああすれば良かった」と悔いたときだった。要は次回の改善策まで思い至っている時で、失敗を思い出すのは嫌でも、とにかく書いてしまえば脳内で抱えておく必要がなくなる。そのため、吐き出すように勢いよく改善策まで書き下せてしまえる。
一方、書けないのは、つらいという感情に支配され、しかもどうすればよいかわからない時だった。つらさの渦中にあるからとにかくそれを想起したくない、文章にすると自分でそれを認めることになるから苦しくて書けない。
→ 改善策:ふりかえりのタイミングを一部フレキシブルにする
毎週土曜に固定してふりかえっていたけど、まだその出来事を消化できておらず向き合えないタイミングで土曜日となることもある。ならば、それをタイトルとして1行書いておいて、消化できたタイミングで詳細を書きに戻れば良いのではと考えた。逆パターンとして、土曜にふりかえるからいいやと放置したことで、いざ書こうとした時に記憶が薄れている場合もあった。土曜にしか書かないのでなく、段階的に書き足していく方式を取ってみたい。

ふりかえりで行動が改善されたのかが不明

毎週ふりかえってはいたものの、では実施しなかった時に比べて本当に自分の行動が改善されたのかと問われると、明確に言えないことに気づいた。ただの自己満足なら、毎週20分程度時間をかけている意味は薄い。
→ 改善策:先週のふりかえりの記録を読み返す時間を作る
KPTのTryを出したり、課題に対する対応策を書いて、それで終わりになっていることが多かった。実際にそのTryや対応策を実施できたのか、実施したならその対応は適切だったのか、実施できなかったならどうすれば実施できるようになるのか。そのあたりをふりかえる機会を設ければ、毎週のふりかえりが連続したものとなっていき、何を改善できたかもう少し実感を持てそうだと思った。 以上でうまくいったところ/いかなかったところが洗い出せたので、それをもとに来年2022年も週次のふりかえりを続けてみようと思う。

Notionで学習管理をしてみた半年のふりかえり

Notionを利用して、自分が学びたいことの進捗管理を半年間やってみた。
具体的にどうやったか、そこから気づいた改善点についてまとめる。

課題認識

今まで、なんとなく「これ勉強しないと」「こんなの作ってみよう」と脳内で考えて漠然と進めてきた。その時々でtodoを書き出してはいたけど、長期的な視点では整理できていなかったため、場当たり的な進捗になりがちだった。 この脳内管理には以下のようなデメリットもある。
・優先順位の整理が曖昧になった結果、結局どれも手をつけない
・常に「あれもしなきゃ」が脳の一部分を占領することになる
・進捗が可視化されていないので進んでいる実感が持ちづらい デメリットが多いことは承知しつつも、改善が面倒で「まあ仕事じゃないしね」という言い訳を盾に放置していた。重い腰を上げ、2020上期はNotionで管理する運用を試してみたので、ふりかえってみる。

具体的な管理方法

上記の課題(デメリット)を解決するには、以下の情報が整理されれば良いと考えた。
① 学びたい分野として何があって
② その分野ごとに取り組みたいことに何があり、いつ着手する予定で
③ 各取り組み内容に対して今日やるタスクは何か これを整理するために、3つのテーブルを親 – 子 – 孫の関係でリンクさせて管理するようにした。
重複レコードが許されたり正規化されていなかったりするので、イメージ図

① 親:Fieldテーブル

自分が学びを深めていきたい分野のテーブル
・例えば、統計 / マーケティング / 機械学習 / …などのような大きな粒度
 ※ 専門分野を深めていく場合は、その分野の中でさらに分化した分野という粒度になる

② 子:Projectテーブル

Fieldテーブルの各分野に対して、具体的に取り組む内容(以下「プロジェクト」と呼ぶ)の各種情報をまとめたテーブル
具体的なやりたいこと、優先度、取り組む時期などを管理する。
・○○という本を読む / ○○を写経する / ○○を作ってみる …という粒度

③ 孫:Todoテーブル

実際に取り組める粒度まで分解したやるべきこと(以下「タスク」と呼ぶ)を管理するテーブル
・1章を読む / ○○について調べる …という粒度

運用の仕方

以下1 ~ 3の整理を随時実施して時々見直しつつ、4の整理は日々行う形で運用した。

1. 学ぶ内容(プロジェクト)を追加する

各分野に対して、今取り組んでいる/今後取り組む予定のプロジェクトとして何があったかを眺めて、この分野はこれもやりたいというものを追加する。
この時、そのプロジェクトはどこまで取り組めたら完了とみなすかゴールを決めておくのが重要だった(「○○をやる」だけだと、完了の判定がしづらいため)。ICEスコアをつけて優先度を決め、取り組む時期を期程度の大きな単位で決めておく。(※ 途中からICEスコアはやめた 後述)

2. 学ぶ内容(プロジェクト)に取り組む時期を決める

進行中のプロジェクトの実施時期と進捗を見つつ、取り組む時期を決める。
Timelineビューだと、複数のプロジェクトの重なりが見えるので時期を決めやすい

3. プロジェクトをタスクに落とす

各プロジェクトのゴールにたどり着くまでにやるべきことは何か、タスクとして書き出す。

4. タスクに取り組む日を決める

Timelineビューで動かして、各タスクの実施日を調整する。実施日は大体で入れておいて、日々状況に合わせ気軽に動かしていた。
Timelineビューだと、複数のタスクの重なりが見えるので調整しやすい

ふりかえり

よかったこと

「いつかあれやらなきゃな(いつかは来ない)」が多少軽減された
取り組みたい内容を登録しておくことで、次に取り組む内容を決める時に選択肢の一つとして検討することになる。
後から見た時、何をやったのか、どのくらいかかったのかがわかる
後からふりかえると「何もできなかった」という気持ちになることがあるけど、記録が残っていることで、ちゃんと進捗はしているのだ(歩みは遅くても)とわかる。
「何もできなかった」が本当に何にも取り組まなかったから正しい認識なのか、あるいは何か具体的に取り組んだけど思ったより進まなかったからそう感じているのかが判断できる。
1回仕組みを作れば、回していくのに手間はさほどかからない
よくこんな面倒なことやってるなと見えるだろうが、一度仕組みができてしまえば見た目ほど面倒ではなかった。

よくなかったこと/反省点

ICEスコアによる優先度決定はあまりフィットしなかった
当初はICEスコア () をつけてスコアが高いものから取り組んでいた。これだとやるべきことばかりが優先度上位に上がり、徐々に学ぶことの苦痛が大きくなっていった。
そこで、途中からはICEスコアによる判断をやめ、やりたいことも並行して取り組むようにした。結果、同時並行でいくつものプロジェクトが進むことになり、脳の切り替えが大変になった。
ICEスコアでなくても、取り組む優先度を決めるための何らかのルールは必要だった。やりたいこととやるべきこと、それぞれ1〜2個ずつしか同時には取り組まないというルールにしてみようと思っている。
タスクの割り方をもう少し工夫したい
例えば技術書を読むというプロジェクトの場合、単純に1章ごとにタスクとして登録していた。実際のところ、分量や難易度によって要する時間は異なる。そのため、複数週にわたって取り組んでも完了できないタスクが出てきた。
進捗が見えづらくなるしやる気も低下するので、もう少し実際の中身を考慮してタスクを割るように変える。
焦燥感はさほど減らなかった
脳内でタスクを管理していた時は、常に「あれもしなきゃ」という焦燥感があった。今回Notionで管理することで見える化され、それが減るのではと思っていたが、さほど減らなかった。これは、やるべきことを整理できていないことが要因の焦燥でなかった、あるいは見える化しても自分のタスクを進める速度は変わらないことあたりが要因かもしれない。

具体的な設定の仕方

似たことをやってみようという方がもしもいた時のため、直感的にわかりづらい箇所の作成手順を簡単に記載しておく。

テーブル同士の関連づけの仕方

紐づく親テーブルのTagsを子テーブルで表示したい場合を例とする。 1. 親テーブルと紐づける
子テーブルで、①プロパティがRelationのカラムを追加し、②親のテーブルを選択する。
③フィールド部分をクリックすると親テーブルのカラム一覧が出るので、紐付けたい親のレコードを選択する。 2. 紐付けた親の任意のカラムを子側で表示する
①子側のテーブルで、プロパティがRollupのカラムを追加する。②フィールド部分をクリックすると各種設定が出てくるので、RELATIONを親テーブル、PROPERTYを表示したい親のカラムにする。
※ 書いておいてなんだけど、公式のhelpページがわかりやすいし詳しい

進捗率のバーの出し方

今回の例だと、そのプロジェクトに紐づくタスクのうち完了した割合を進捗バーとして表示するようにしている。
具体的な設定の仕方については、35D BLOG | Notion でプロジェクトの進捗を可視化する(Formula 機能の使い方)を参照させていただいた。

脚注 (※)
ICEスコア:複数の着手すべき事案がある時に、優先すべきものを順序づける方法
ICEは影響力(Impact) / 信頼度(Confidence) / 容易性(Ease)の頭文字で、この3指標の掛け合わせが大きいものから着手する

Couseraの機械学習講座を受講した

オンライン教育サービスであるCouseraで、機械学習の基礎的な学習講座として有名なMachine Learning講座を受講した。

前々から気になりつつ、「自分がついていけるレベルだろうか」「英語わかんないしな」(講義には日本語訳がついているけどテストや課題は英語)、「Pythonじゃないし」(プログラミング課題はOctaveで提出する)となかなか踏み出せずにいた。
在宅勤務になり家にいる時間が増えたことも後押しになって、受講することができたので、感想等記録しておく。

扱われる内容

下記のキーワードに関連する内容について、11週にわたり講義が行われる。

Week 1 機械学習の概要
線形単回帰、最小二乗法、最急降下法

Week 2 線形重回帰
特徴量のスケーリング、正則化

Week 3 分類 ロジスティック回帰
過学習、正則化、One-vs-All

Week 4・5 ニューラルネットワーク
隠れ層、論理ゲート、backpropagation、gradient checking、ランダム初期化

Week 6 機械学習の評価
交差検証、high bias、high variance、学習曲線、適合率、再現率、F値

Week 7 サポートベクタマシン(SVM)
マージン、決定境界、カーネル法

Week 8 クラスタリング・主成分分析(PCA)
K平均法、局所最適、エルボー法
次元削減、射影誤差、共分散行列

Week 9 異常検知・レコメンドシステム
正規分布、多変量正規分布
協調フィルタリング、類似度

Week 10 大規模データ
確率的勾配降下法、ミニバッチ勾配降下法、逐次学習、並列化

Week 11 Photo OCR
パイプライン、スライディングウインドウ、データ合成、ceiling analysis

学習の進め方

ノート
こんな感じでノートにメモしていった

各週、動画による講義 + テスト + プログラミング課題から構成されている。
私は講義を平日にざっと見て(わからないところがあってもあまり気にせず最後までいったん見る)、休日にもう1回見直しながら話の流れをノートにメモしていった。平日見たときは「何言ってるか全然わからん」と思った箇所も、2回目に休日に見た時は「あれ、なんで理解できなかったんだろう」となることも多かった(何回見直してもやっぱりわからん、となる箇所ももちろんあった)。
講師のAndrew先生の説明がわかりやすかったのはもちろんだけど、ノートにまとめようとする過程で理解が曖昧な箇所をつぶし、流れをしっかり捉えられるのが自分にはよかったのかなと思う。

かかった時間

ネット上の体験談だと1ヶ月未満で完了したという方も割と見かけたけど(みんな天才なのかな?と思った)、私は設定されているのと同じペースで進めていったので、約2ヶ月かかった。週により内容の重さの差が大きくて、3時間で終わった週もあれば15時間以上かかった週もあった。

感想

講座全体を通じて感じたことを記録しておく。

  • 勉強を続けて納得感を高めていきたいと思った

とても勉強になったので受講してよかったなと思う。
説明が非常にわかりやすいので、そのアルゴリズムの意図や、数式の意味するところの大枠について理解することができた。全体的に納得しながら進めることができたのだけど、「この数式がなぜこうなるかは、ここでは説明しない」という説明で次に進む部分もしばしばあったので、数式の導出などは少しもやもやが残った。また、課題は一から自分でコードを書くのではなく、重要な数式部分のみ自分で書くという形式だった。そのため、ふんわりとした理解になっている自覚がある。自分でPythonで書き直してみるとか、数式の導出をしてみるとかするべきなのだろう。勉強を続けていって、理解を深めていきたいと思う。

  • 英語をもうちょっと読めるようになると色々楽だなと思った

講義には有志の方がつけてくれた訳文がついているけど、テストや課題は英語で書かれている。最初の数週は頑張って単語を調べながら読んでいたけど、途中から面倒になってDeepLに突っ込んで訳文を読むようになった。俄然課題の進みが速くなって、自分の英語力の低さを改めて実感した。DeepLは訳が自然で、訳文だと意味が不明で結局原文を読むみたいなことはほとんど発生しなかった(訳文を読んで「解くのに必要な前提条件が足りない…」となって、原文見たら訳されていない箇所があった、ということは数度あった)。

  • ペース配分を自分でしなくて済むのって楽だなと思った

課題を提出すると、何割終わったか示してくれる

オンライン講座では当たり前なのかもしれないけど、見終わった動画にはチェックマークがついたり、プログラミング課題も途中提出の度にどこまで終わったか明確に表してくれる。「今週中にあと3個動画見て課題を解くから、x時間くらいで終わる」とわかると、残りの時間は別の学習に充てようなど見通しが立てやすい。ペース配分を自分でしなくて済むこと、どこまで進んでいるか示してくれることがこんなに楽なのかというのは意外な発見だった。

今後機械学習の勉強をしていく上で、非常に役に立つ講座だった。継続して学習していきたい。

データ分析者がCS経験から得たこと

※ ここでのCSはカスタマーサービス(コンピュータサイエンスではない)

昨年、分析を中心としたディレクター職から、CS職に異動して半年ほど過ごした。
この半年間の経験から何を得て、意識や行動がどう変わったのか、再びディレクターに戻り数ヶ月経った現在までに感じた差分をふりかえってみる。

  • ユーザーの姿が以前より立体的になった
    CS業務の中心である問合せ対応を行うなかで、自分の中のユーザー像が少しずつ具体的になっていった。以前はデータから「こういうお客様がいるのかな」と思ったり、周りから「こういう傾向のユーザーが多いよ」と聞いて、漠然とユーザーの姿を想像していた。それが、お客様からの問合せを千数百人分読み、1件ずつ自分の手で回答文を作成することで、「〜を目的として操作する人には〜でつまずく人が多く、それはこの部分が理解しづらいことが原因かもしれない」などの仮説が自分の中に蓄積されていった。
    データを見るとき全体的な視点になりがちだったけど、1件のデータの裏にいる1人のユーザーを実感を伴った形で想像できるようになったことで、データから仮説を考えやすくなったと感じている。1

  • 「分析が役に立てる」と認識する範囲が広がった
    CS業務を毎日していると、「こういう傾向の問合せが多いから改善したい」という部分(明らかな不具合であれば即エンジニア等に対応してもらうけど、そうではなく、より使いやすくなるような改善点)が見えてくる。そう感じる部分は同じサービスに携わるCS内では大抵共通認識となっていたけど、他職種の人も同様に認識しているかというと必ずしもそうではない場合もあった。
    その内の1つについて、事象の起こっている件数、それによる損失額、具体な原因と改善案を問合せ対応の合間にまとめ、CS外に提案したところ、実際に改善に至ることができた。
    以前は、当たり前なことを可視化しても「そうだね」「知ってる」となるだけで、さほど意味がないのではと思っていた。でも、当たり前の範囲は人により差があり、各自が認識しているサービスの姿は思っている以上に異なっていることがわかってきた。また、当たり前であってもその課題の大きさや姿は具体的に認識されていない場合もあることもわかった。
    こういった点について、分析者が媒介になる(課題を適切に可視化して共有することで、解決につなげる)ことも分析が役に立てる範囲なんだなと認識が広がった。
    媒介となるためには、分析者が課題の存在を認識している必要がある。CSにいればサービスへの反応を自然と知ることができるけど、現在は離れているし半年で認識できた範囲はわずかだと思うので、これからもCSのメンバーに積極的に話を聞かせてもらいに行こうと思っている。

  • 分析を通じて貢献するぞ、という意識が強くなった
    CS在籍中、エンジニアやデザイナーなど色々な人が折にふれ、気にかけて声をかけてくれた。また、CSの同僚も私が分析をやりたい(CSとして今後やっていきたいわけではない)ことを知った上で、色々質問しても、どの部分を見てどう考えた結果その判断に至ったのか、サービスがそうなっている経緯など納得するまで教えてくれた。
    ディレクターに戻り、それらに報いたいという気持ちとともに、分析面でしっかり貢献できないと(分析専門でない部署で分析中心にやっている分余計に)自分がここに存在する意味がなくなってしまうなと思うようになった。
    存在意義を示すためには、分析により改善につながる部分を見定めること、分析結果を示すだけでなくそれを施策に落として提案することが必要だと思っている(そもそもの分析能力も当然まだまだ精進が必要だけど)。色々スマートにできなくて転げながらやっている毎日だけど、分析を業務としてやれることが嬉しいから、かっこわるくてもやっていく。


  1. 利用中に一度も問合せをされないお客様も多いので、問合せだけからユーザーの姿を思い込みすぎるのは危険である、という点も留意する必要はあると思っている 

何に時間を使ったか_2019上期

統計検定を受けた時のふりかえりで「何に時間をかけているか意識をしよう」と考えてから、ちまちまと記録をしていたので、半年間の時間の使い方をふりかえってみる。
以下、自分で「学び」系の区分に入れていた時間の内訳を記載する(なので、一般に「これは学びというより趣味なのでは…」という部分も含まれる)。

⑴ データ分析関係

  • 分析手法を学ぶ 18h 7冊
    データ分析の手法や、業務として分析を進めていく方法などについて書かれている本を読んだ。読んだ中では、以下の本が一番実際の業務に当てはめながら読めて、学びが多かった。
    ビジネス活用事例で学ぶ データサイエンス入門

  • 機械学習について学ぶ 15h 2冊
    scikit-learnのライブラリを利用して実行する方法と、機械学習に使われている数学の基礎について書かれた本を途中まで読んだ。半年で15hと、お前やる気あるのかという状態なので、来期はもう少しまじめに勉強する。
    機械学習を理解するための数学のきほん
    Pythonではじめる機械学習 scikit-learnで学ぶ特徴量エンジニアリングと機械学習の基礎

  • 実際のデータで試す 62h
    上記で学んだ手法を実際のデータで試して遊んでいた時間。けっこう時間かけている割には、ちゃんとまとめておらず、ちょっと試してみたJupyter Notebookが散逸しているような状態で、自分の中に残っているものが少ないのが反省点。

⑵ エンジニアリング関係の学び

⑶ 業務理解

  • ビジネス系の本を読む 34h 16冊
    周りの人がごく普通に感覚として持っていることでも、自分は知らないなと思い、なるべく業務に関係しそうな本を読んだ。

この辺は、知識として読んでよかったなと思う。
カスタマーサクセス――サブスクリプション時代に求められる「顧客の成功」10の原則
サブスクリプション――「顧客の成功」が収益を生む新時代のビジネスモデル

逆に、直接的に業務とつながるわけではないけど、「面白い」と思ったのはこの辺り。
TRUST 世界最先端の企業はいかに〈信頼〉を攻略したか
Airbnbが登場当初、「見知らぬ人の家に宿泊する」というアイデアへの理解・信頼を得るため、どのようなサイト構成にしたのかという部分が興味深かった。

すいません、ほぼ日の経営。
“いまは「あなたはなにもしなくていい」という商品ばかりが売れる時代です。でも手帳は、あなたがなにかをしなければいけない商品です。使いながら完成させていくものです。ぼくらは、いわば未完成品を売っているわけで、それを完成品にするのは使う人です。”

色々条件は異なるけど、作ってもらうという部分は今の仕事で扱うサービスと共通で、なんかヒントがありそうだなと思った。

  • インタビューについての本を読む 17h 3冊
    社内で分析課題について探る時、「その業務に精通している人から的確に話を聞いて、分析課題に落とす」ことが上手くできていないなという気持ちから、インタビューにヒントがないだろうか、と考え読んだ。メモを取ってまとめたは良いものの、そのままになってしまっていたので、見返して日々に活かすにはどうしたらよいかを考える必要がある。

マーケティング・インタビュー 問題解決のヒントを「聞き出す」技術
ユーザーインタビューをはじめよう ―UXリサーチのための、「聞くこと」入門
インタビュー 木村俊介

⑷ アウトプット

仕事でPythonに触れる割合が減ったので、忘れないようにという意味合いもあって行った。作成のふりかえりはすでに書いた。
はじめてのLTで緊張したけど、一人で作っていたものについて人が話を聞いてくれて、感想まで教えてくれるってすばらしいなと思った。

ブログへのまとめに時間がかかっている。本編より長い。まとめ出すとよくわかっていない部分に気づいて調べたり、どう書いたらわかりやすいのか考えたりとかしているうちに時間がかかってしまっている状態。もう少し短縮したい。

⑸ その他

  • ふりかえり 14h
    主に「今週のふりかえり」(何をしたか、何を考えたか)をしていた時間。平均0.5h/週。今のところ「やっててよかった」と思う機会は訪れていない。

  • 色々考える時間 23h
    仕事/仕事外両者について、「こういう分析やれないかな」「やるには具体的にどうしたらいいか」等考えていた時間。のはずなんだけど、しっかりまとめてメモしていなかったせいで、かかっている時間の割には実りが少ない。平均1h/週。

  • その他 28h
    Pythonのライブラリ入れてうまくいかなくて調べたり、疑問に思ったことを調べたりしていた時間。

  • 不明 26h
    「何やったか書くのめんどいな…」と思ってその場で書かないとこうなる。⑴〜⑶のいずれかに入ると思われる。

ふりかえっての所感

記録を取ることで時間に対する感覚が転換した

以前から、時間の使い方は毎日記録していた。ただ、それは睡眠x時間、仕事y時間…という項目別のレベルの記録だった。それだと、学びに対して「今週はx時間かー」というふりかえりになり、「いかに学びにかける時間を増やせるか」という見方になっていた。
それが学びの中身を具体的に記録するようになったら、「この本読むのにもうx時間かかってるのか…急ごう」となり、「いかに短い時間で学べるか」という見方に変わった。
どちらも「記録する」という点では同じなのに、自分の見方が逆に変わったのは面白いなと思う。

漫然と学んでしまっている

その週、仕事で触れていた分野だったり、図書館で偶然借りた本だったりを学んでいることが多かった。計画性に欠けていた。
半年単位で集計すると数十時間かけていたことでも、ふりかえると「こんなにかけてた…?ていうか何も得てなくない…?」と思う分野もあった。特に「本を読んだ」分野だと、メモを取っていないと内容がほぼ記憶に残っていない(メモを取っていても、鮮明には残っていない)。

勉強すること自体には意味がない

そう、「勉強すること」自体には意味がないのである(※ 娯楽として勉強する場合は別として)。今の自分の学びは、基本的に「データ分析の観点から役に立てるようになる」ためにやっているので、学んで「なるほど」で終わったら意味がないのである。この点の意識が不十分だったなと思う。

半年あったら、もっとできるんじゃねーの、と思った

総量的な意味でも、時間あたりの質的な意味でも、ふりかえるともっとできるよね?という感じ。

図書館を利用することの弊害が出ている

8割方の本は図書館で借りさせていただいて読んだ。図書館で借りることのメリットは、返却期限があることで、強制的に勉強する期限が設定できることだ。
一方、図書館で借りて「腰を据えて勉強しよう」と思った本は買って読むんだけど、そうすると「いつでも読める」と思ってしまう。結果、自分にとって重要度の高い本を読まずに、返却期限のある本を優先することになってしまっていた。

バックアップはちゃんと取ろう

6/29、PCが壊れ、ここ半年で学んでローカルに保存していたファイルやデータベースが消えた。バックアップの重要性が身にしみた。この記事もスマホで書いているけど、画面が小さくてつらい。

で、これからどうするの?

  • もう少しこまめにふりかえって、軌道修正するようにする
  • 学んだ内容をちゃんと文に落とす
  • 図書館で本を借りるのはもう少し抑える
  • 理論面、技術面を真剣に学ぶ

楽しんで働くへの現時点の返答

前職にいた時、必要以上に真面目に取り組むことで許されようとする悪癖があった(今もちょっと残っている)。
期限に間に合わせるため、土日や年末年始にも非公式に職場にやってきて働くとか、そういう行動のことです。

この行動は、前職においておおむね批判されなかった。仕事量も人員数も調整がきかない場だったので、便利な存在という側面もあったと思う(そうやって働く人も多かった)1
一方で、その姿勢を諌めてくれる先輩もいた。「お前のまじめさは美徳なんかじゃねーからな」と。
だって、やるしかないじゃん、と思っていた。さらには、この日々は何らかの形で報われると勝手に思っていた。

3年目のある日、気づいた。
部長や課長、あるいは組織がこの頑張りに報いてくれるわけでないし、私の人生に責任を持ってくれるわけではない(当然、持つ必要もない)。
頑張りによる成果は彼らを喜ばせ、それは単純に嬉しいけど、それを自分の最終目的にしても、(頑張っている内容からして)自分に何かが残るわけではない。

この人生を生きているのは誰?
私だ。
まじか、そうかと思った。

目前の仕事だけでいっぱいな日々は、その間思考停止できて、実は楽だ。「でも今はこれをしなきゃ」が汎用的な言い訳になる。
でも、それを何年も続けていると、自分の価値は目前の仕事だけだから、その出来に精神状態が100%左右されるようになる。そして、頑張る見返りとして、自分の人生の責任を取るのは自分であるということを放棄したい心持ちになっていった。

(しつこいですが、ここまで前職での話です)

転職して数ヶ月、楽しんで働くってなんだ、とぼんやり考え続けていた2

まだ考えがまとまっていないけど、一つ考えたことは、真面目であることは、真剣なのと似ているけど違うということだ。真面目さは義務感から発している一方、真剣さはその対象を自分ごととして捉えることから発している。真面目さは深刻さへつながっていく一方、真剣さはユーモアと同居できる。
「どうしたらそれができるって思う?」「今の自分・状況で取りうる、最善の行動ってなんだろうね?」と自分に問いかけてやって、困難3にも、にいっと笑って、楽しんでやっていきたい。今、自分は事業にしっかり貢献できるだけの実力が持てていないけれど、その中でも、考えることはできるはずなのだ。

真面目さで評価されようとするよりも、真剣に取り組んで成果を出す方が厳しい世界なのは気づいている。
無意識に慣れた手法を取ってしまうけど、頑張り方も変えていきたい。1歩進んで、1歩下がって、の繰り返しだろうけど、それでも振り返れば進んでいる。


  1. 数年前の話なので、今は改善されている部分もある。また、強制されたものではない 
  2. 入った当初言われた「楽しんでやりましょう」の衝撃が大きくて、ずっと心の中にあった 
  3. ここでいう困難とは、あくまで現段階の自分から見ての話 他の人から見たらそんなの困難と呼ばないよ、というものも含む 

統計検定2級を受けた

先日、統計検定2級の試験を受けた。感触がいまいちだった1ので、結果が出る前にふりかえりを書いてしまおうと思う。(後日、運よく受かっていたことがわかった)

知識のついていく過程

基本的に、過去問2を解くことを中心に学習した。その合間に、公式のテキスト3を読んだり、理解が曖昧で何度も調べる部分をまとめたりした。
過去問の年度別に、正答を導けた割合の変化を時系列で見てみると下図のようになっている。

一応、どの年度も解き直しをする度に少しずつできる割合が上がってはいる。今見ると、解き直しでも8割程度しか取れていないあたり、理解や演習が足りていない様子が表れているなと思う。

大まかに次の3段階で理解が進んでいった。
– 初期:理解していることが自分の中で整理できていない状態。全体の5割は解説を読めば理解できたけど、3割くらいは解説を読んでも理解できなかった。
– 中期:公式テキストをざっと読んで自分の中で整理し、最低限公式的な部分は覚えてしまうことで、過去問の解説を読めばほぼ理解できるようになった。
– 後期:1度理解しただけでは自分で再現できないような、あやふやな部分を解き直した(が、おそらく身についてはいなかった)。

かけた時間

初見の過去問に対し正答を導けた割合と累積学習時間を重ねてみると、割と比例していることがわかる。おそらく、この分野に対する学習がまだ初期段階だから、やるだけ理解が上がっていく楽しい時期にいるんだと思う。

試験終了後に集計してみるまで、これほど時間を投入していたと思わなかった(合計で40~50時間の感覚だったのに、2倍くらい費やしている)ので、投入時間の割に自分の理解のレベルが低く感じ、数日悲しい気分になった。

いったいどの部分にこれほど時間がかかっていたのか?
体感だけど、過去問に下記の時間をかけていたと思う。


これに公式のテキストでの学習やまとめていた時間を足しても、おそらく60時間程度にしかならない。
約30時間が闇の中である4

統計検定の勉強による変化

良いこともあって、社内でやってもらっていた読書会5に使用していた本(統計学入門6)に対する見え方が変わった。
読書会中はだいぶ難しく感じて、「統計とかデータ分析やってる人ってみんな天才なのかな…?」「ていうか自分が向いていないだけか」と思ったし(今もこれはよぎる)、本に対し30回くらいは「いったい何言っているんだ…」と思った。統計検定の勉強をした後に見ると、理解できるようになっていて「かなりわかりやすく丁寧に書いてくれているな」「確かに入門の本だな」と思えるようになった(入門レベルだと判断できることと、その内容を完璧に理解できることはまた別ではあるが)。

学習へのふりかえり

今回、学習時間は記録していたけど、その中で何をしたかは記録していなかった。遊びとして記録していたから、最初にしっかり考えなかったけど、最後に何を見たいのかを考えて記録すべきだった。
今まで学ぶ量(時間)を増やそうという方向に意識が向かっていたと思う。でも時間は有限で、さほど若くないのに新たな分野を物にしようとするなら、何をしたのか、それに時間がどれだけかかったのか、もう少し自覚的になる必要があると思った。試しに1ヶ月、勉強した時間とその内容を記録してみようと思う。


  1. 自己採点だとほぼボーダーライン上だった。1〜2問足りずに落ちそうである(結果発表までどきどきが楽しめてお得だと思うことにする) 
  2. 日本統計学会公式認定 統計検定 2級 公式問題集/日本統計学会編 
  3. 改訂版 日本統計学会公式認定 統計検定2級対応「統計学基礎」/日本統計学会編 
  4. たぶん、理解できない部分についてずっと考えていたり、仕事帰りに勉強のため寄ったカフェで虚無状態になっていた時間が入っていると思われる 
  5. 読書会が相当役に立っていて、これがなかったら統計検定の勉強を途中で諦めていたと思う 
  6. 統計学入門/東京大学教養学部統計学教室 編 

2ヶ月めにやった学習のふりかえり

具体的にやったこと

データサイエンス領域
「基礎統計学Ⅰ 統計学入門」

  • 1ヶ月めに引き続き、読書会形式で一緒にやっていただいた。先月より内容的に難しく感じる部分が増えて、進捗としては本の半分を超えた程度。
  • 数式を追っていくとそうなることはわかるけど、その結論は感覚的には納得できない、というような部分で引っかかっていた。
  • そういった部分について、具体的にPythonで計算してみたりした。結果、納得とまではいかなくても、やる前よりはその概念に対する理解を少し進めることができた。

データエンジニア領域
「Pythonによるデータ分析入門 ―NumPy、pandasを使ったデータ処理」

  • 上記の本を参考にしながら、Pandas等で何をすることができるか学び、実際のデータに適用してみて理解を深める、ということをした。
  • 先月やった1冊めの本(Pythonの基本的な使い方を網羅する本)では出てこなかったデータ分析のためのPythonでの書き方を知ることができ、先月より具体的なイメージを持つことができた。

事業ドメイン領域
実際のデータを分析して、事業に貢献する会が始まった。

  • 実際のデータに触れるのはとてもテンションが上がる。学習用のデータと何が違うんだ、と言われると明確な差があるわけではないけど、おそらく、本当の出来事のデータであるという点と、そのデータを通して自分が貢献できる可能性があるという点が異なるからだろうと思う。(逆にいうと、貢献できなかったら自分の存在価値をどこで示していけるかというプレッシャーも当然ある)
  • 残り2つの領域が、データ分析における道具に当たるのに対し、この領域は分析の前提に当たる根幹部分だと思う。道具でない分、その身につけ方は不定形で捉えづらい。実際、上記の会でも話についていけない部分があって、一方でそれを理解できるようになるにはこれを学べばよい、という類いのものとも思えず、漠然と悩んでいる部分である(悩みが漠然としている点からも、考えの整理ができていないことを示しているなと思う)。
  • 当初は浅く広く事業全般を知ろうとしていたけど、割と今は上記の会のミッションに向けた知識のつけ方に向かっていて、まずはそれをしっかりやるべきだろうと思う。

全体的なふりかえり

学びの第2段階に入った(特にデータエンジニア領域)
  • 1ヶ月めは、本に沿って一項目ずつ押さえていく学び方をしていて、これはPythonの全般的な使い方を学ぶという目的に合致していた。今月やった2冊めは、本の内容を全て学び切るというより、データ分析という目的に向け、本は参考として自分を分析できる状態にすべく統合的に学ぶ必要があったのだと思う。それが当初は理解できていなくて、メンターの方の言葉で気づかせてもらえて、学び方を変えることができた。
  • 学び方は段階によって違うんだなと思った。学ぶ目的は、別に本の内容を完全に理解して再現できることでなく、その技術を使って自分のやりたいことをできるようになることである、という根本的なことを認識することができた。
  • まだ第3段階、第4段階とあると思う(例えば、今はまだできていないけど、関数の中身がどのように書かれているかのぞいてみるとか、他の人のコードを読んで書き方を学ぶとか)ので、学ぶ方法も深化していけたらいいと思う。
3領域が融合し始めた
  • 統計学で学んだ分布をPythonで書いてみたり、実際のデータを使って分析し始める等の変化があった。1ヶ月目では完全に各分野を分けて学んでいる状態だったのが、それらの知識を統合し始める段階に入ってきた。知識はそれ単体で持っているよりも、自分の中で有機的につなげることができると面白くなってくる。
  • 今の立場は、各領域の専門家に比べると知識が浅く広く必要になる立場で、自分がどういう方向に向かっていくか意識しないと中途半端になる可能性もあると思うけど、この立ち位置ならではの面白さもありそうだなと感じた。

公務員から転職して感じたこと

新卒で入った地方公共団体で数年間働いて、今回、GMOペパボ株式会社に仲間に入れてもらった(この経緯もいつかまとめられたらと思っている)。
ここでは、公務員という立場から転職して感じた違いについて書いてみる。

一言でいうと、全体的にワンダーランドだった。
共通点の方がむしろ少なくて、いちいち新鮮で面白かった。
入る前の想像と違うということでなく、頭で理解しているのに体がついていかないというような感覚だった。単に仕事内容や進め方の違いだけでなく、何を大切にするかという根本的なところが違っていたので、そう感じたのだと思う。
たくさんの違いの中でも、象徴的だなと感じたのは以下の2点だった。

  • 楽しむということ:
    当初、言われた言葉「楽しんでやりましょう」。
    楽しむって何だと思った。今まで、楽しそうにしていると通報されることのある立場だったから(改めて考えるとすごい)、無意識に自制するようになっていた。
    仕事を楽しむってどういうことかわからなかったけれど、まずは「見当違いかなと思ってもとりあえず手を動かしてやってみる」ことをしようと考えた。
    前職で難しい対応をする時、相手の課題をより良く解決しようという視点でなく、訴えられない等の自分を守る視点になっていることが時々あって、そういう時は本当に楽しくないし、その守るという結果以外、何も新しいものが生まれなかった。1
    おそらく、楽しむというのはそれと逆で、フラットな状態で物事に接し、前向きに取り組んで、結果としてもっとおもしろいものが生まれる、という状態なのかなと現時点では考えている。

  • 組織への愛情:
    最も違いを感じた部分かもしれない。
    新卒生の研修終了の会を見ていて、ペパボへのある種純粋すぎるほどの愛を感じて、すごくまぶしかったし、その一員となれたことを嬉しく思った。
    同時に、前職の若手の仲間の顔を思い出していた。ペパボと同じくらい、前職の皆も住民のために頑張っていて、概ね人間関係も良好なのに、なぜ組織への誇りを持てない雰囲気だったのか 2 、そういう空気しか作れなかったことを後輩に申し訳なく思った。
    ペパボの雰囲気は、各人が醸成している部分もあるし、そうなるように意識的に作り維持されている部分もあるのだろうと思う。私はそれをいいなと思って入ってきたので、どうやって作られたものなのか観察して、前職との違いを生んでいる原因は何か考えたいと思っている。


  1. 色々な前提が異なるので、仕方ない部分もあると思う。きっと、その職場ごとに「楽しんで仕事をする」ということの姿は異なっている 

  2. 個人的な感想。あの場所だからこそ学べたこともいっぱいあったし、転職した今もお世話になった先輩・後輩への感謝の気持ちは強い 

1ヶ月めにやった学習のふりかえり

学習に入る前の状態

  • データ分析・プログラミングとも未経験で、全く別分野の仕事をしていた
  • 休日に趣味として少し勉強していた
  • データ分析は、本当に基本的な統計の本を何冊か読み、当時触っていたデータが時系列データだったので、それに必要な専門書を数冊斜め読みした
  • プログラミングは最初Pythonを勉強していたけど、具体的にデータ分析ができるレベルになるのはなかなか難しいと感じ、途中からRを使うようになった
  • 手元のデータを実際に触ってみて、わからなくなったら参考書に戻って、という繰り返しをしていた

1ヶ月目にしようとしたこと

大まかには、下記3領域について1

  • 事業ドメイン領域
    事業に関し、社内/外部・競合/ユーザーの概要について理解する

  • データサイエンス領域
    基礎的な統計知識を身につける : 「基礎統計学Ⅰ 統計学入門」
    データ分析の概要を掴む : 「データサイエンティスト養成読本」

  • データエンジニア領域
    Pythonの基本的な文法の使い方を習得する : 「詳細!Python3入門ノート」

結果、できたこと

事業ドメイン領域

  • 事業の概要についてお聞きした。
  • ユーザー側にいた時にはわからなかったサービスの現状や課題、目標を知ることができた。ただ、今知っているのは本当に概要のまとめで、もっと事業ドメインの知識やその肌感覚を知らないと、仮に分析手法が身についたとしてもできるのは表面的な分析になってしまうだろうと感じた。
  • 今後、特にディレクターの方が、日々何に取り組んでいるか、具体的に何を解決しようとして今何を考えているのかを知ることで、自分の中の理解を深めたい。CSの方が日々どんな問合せを受けているかという点もデータの宝庫だと思うので、お話をお聞きしたいと思った。

データサイエンス領域

「基礎統計学Ⅰ 統計学入門」

  • 原則毎日1時間、読書会をしていただいた。1冊の1/3くらいまで進んだ。自分で読んで理解した内容を言葉にしたりホワイトボードに書いたりして、逆に理解できなかった部分を教えていただくような形式で進めた。読書会後、内容をまとめていると、実は理解できていなかったことに気づいて考え直すこともしばしばあった。
  • 今までは、初学者向けの本を数冊と、趣味でやっていた分析に必要な部分の本を読んでいるだけだったので、この本によって網羅的に知識を身につけることができると思う。
  • 統計学的にでなく数学的に理解ができず時間がかかった部分があったので、微積や行列など、統計に関連する部分の復習をしたい。

「データサイエンティスト養成読本」

  • 読んで、不明な点を調べてレポートにまとめ、それに対しレビューしていただく形で進めた。3章分。データ分析の流れや各段階での注意点、データベースについて等。
  • 本で解説している用語に対し、その解説内で出てくる単語がわからないという状況だったので、調べる中でおぼろげにデータ分析の世界が見えてきたような知識レベルにいる。実際に分析をやっていくことで、こういうことを言っていたのかと理解できるようになるのではないかと思っている。
  • 分析結果の表現はその意図がなくても恣意的になってしまうので、自身に対する健全な猜疑心が大事という文が印象的だった。確かに、導いた結論を象徴している部分に注目しがちになるので、気をつけたいと思った。

データエンジニア領域

「詳細!Python3入門ノート」

  • 写経してjupyter notebookに章ごとにまとめ、レビュー(不明点についての回答やコードの書く際の注意点など)していただく形で進めた。一応1冊最後まで一通りやった。
  • 前半は以前に自分で学んでいた内容と概ね重なっていたが、後半ジェネレータやクラスの辺りは初見の部分があり時間がかかった。まだ腹落ちした感覚がない部分もあるけど、何度も触れることで頭の中にその分野の回路ができるので、定期的に復習するようにしたい。

全体的な感想

  • 学習に対して、1ヶ月はあっという間だった。もう少しスピードを上げていきたいと思いながら、この業界にいる人はおそらく身についているのが当然なのであろうGitやシェルの使い方など、基本的な部分で引っかかって時間を食うことが多かった(自分で調べて解決する力が必要なので、無駄ではないとは思う。また、ごく基本的な部分しかわかっていないので、もっと習熟する必要がある)。

  • 20代の時間を別分野の事に使ってきたので周りの方との差があるのは当然で、焦りはあるけれど、毎日今の自分にできる、自分の力を伸ばすためにできることは何か考えて、それに取り組み続けるしかないと思う。やりたいことはいっぱいある一方、1日で進むのは微量でもどかしいけれど、3ヶ月後、1年後の自分に期待するわくわくする気持ちがあって、自分は学び続けることができることを知っているので、がんばりたい。


  1. データサイエンティスト協会が示している「データサイエンティストに求められるスキルセット」の3つの領域より http://www.datascientist.or.jp/news/2014/pdf/1210.pdf