判別分析についてわかったこと

今、判別分析について学んでいて、少しずつわかってきた(ような気がする)ので、現時点で理解した(と思っている)内容をまとめてみる。
※ 以下、私の理解不足による誤りがある可能性もある。

1  判別分析とは何か

  • ある計測・観測した値から、結果(どちらの群に属するか)を推測する手法
    例1)飲酒量や検査の値などから病気の発病を予測する
    例2)顧客の情報から商品の購入を予測する

例1)なら
– 目的変数:病気を発症する群と発症しない群
– 説明変数:飲酒量、検査の値など
となり、病気を発症する群としない群をなるべく精度良く分けるための数式を考える。そして、新たな人の飲酒量等の数値を数式に当てはめることで、その人が発症するかどうかを予測する。

2  どのように判別するか

主にマハラノビスの距離による判別と線形判別式による判別がある。

2-1  マハラノビスの距離による判別

各群の中心(重心)を求め、そこまでの距離が短い方の群に属するとする方法。距離は単純な距離でなく、各群のばらつきを考慮した(1標準偏差あたりとした)距離を使う(マハラノビスの距離という)。

以下、説明変数が一つの場合でまず考え、その後に説明変数が2つの場合に応用する。

2-2  線形判別式による判別

以下、説明変数が2つの場合を例として考える。
その2つの説明変数を2軸とした平面で考えると、最も良く群を分離する直線を引くことを考える方法。

3  判別の精度をどのように測るか

 

参考

以下の書籍で勉強させていただきました。

入門はじめての多変量解析
石村 貞夫 石村 光資郎
東京図書

 

 

川崎 智也 稲垣 具志 寺内 義典 石坂 哲宏
コロナ社

 

 

 


(感想など)
  • まだ不十分なので、後日追記(+修正)したい。あと、判別分析の説明変数がカテゴリデータだった場合である数量化二類についても追記したい。

  • もともと画像にすることを考えずに書いていたこともあって、思った以上に見づらい。ただ、数式の添え字等を打つのが手間がかかるので、画像をもう少し見やすくする方向で改善したい。

タイトルとURLをコピーしました